Differential Equations 2 Question 21

22. Let f:(0,)R be a differentiable function such that f(x)=2f(x)x for all x(0,) and f(1)1. Then

(a) limx0+f1x=1

(b) limx0+xf1x=2

(c) limx0+x2f(x)=0

(d) |f(x)|2 for all x(0,2)

Show Answer

Answer:

Correct Answer: 22. (a)

Solution:

  1. Here, f(x)=2f(x)x

or dydx+yx=2 [i.e. linear differential equation in y ]

Integrating Factor, IF=e1xdx=elogx=x

Required solution is y(IF)=Q(IF)dx+C

y(x)=2(x)dx+Cyx=x2+Cy=x+Cx[C0, as f(1)1]

(a) limx0+f1x=limx0+(1Cx2)=1

Option (a) is correct.

(b) limx0+xf1x=limx0+(1+Cx2)=1

Option (b) is incorrect.

(c) limx0+x2f(x)=limx0+(x2C)=C0

Option (c) is incorrect.

(d) f(x)=x+Cx,C0

For C>0,limx0+f(x)=

Function is not bounded in (0,2).

Option (d) is incorrect.



NCERT Chapter Video Solution

Dual Pane