Differential Equations 2 Question 12

12.

If dydx+3cos2xy=1cos2x,x(π3,π3) and yπ4=(43), then yπ4 equals

(2019 Main, 10 Jan I)

(a) 13+e6

(b) 43

(c) 13+e3

(d) 13

Show Answer

Answer:

Correct Answer: 12. (a)

Solution:

  1. Given, differential equation is dydx+(3cos2x)y=1cos2x, which is a linear differential equation of the form

dydx+Py=Q, where P=3cos2x and Q=1cos2x.

Now, Integrating factor

IF=e3cos2xdx=eβsec2xdx=e3tanx and the solution of differential equation is given by

y(IF)=(Q.(IF))dxe3tanxy=e3tanxsec2xdx.(i) Let I=e3tanxsec2xdx Put 3tanx=t3sec2xdx=dtI=et3dt=et3+C=e3tanx3+C

From Eq. (i)

e3tanxy=e3tanx3+C

It is given that when,

x=π4,y is 43

e343=e33+C

C=e3

Thus, e3tanxy=e3tanx3+e3

Now, when x=π4,e3y=e33+e3

y=e6+13 [tanπ4=1]



NCERT Chapter Video Solution

Dual Pane