Differential Equations 2 Question 11

11. Let f be a differentiable function such that f(x)=734f(x)x,(x>0) and f(1)4. Then, limx0+xf1x

(2019 Main, 10 Jan II)

(a) does not exist

(c) exists and equals 0

(b) exists and equals 47

(d) exists and equals 4

Show Answer

Answer:

Correct Answer: 11. (d)

Solution:

  1. Given, f(x)=734f(x)x,(x>0)

On putting f(x)=y and f(x)=dydx, then we get

dydx=734yxdydx+34xy=7

which is a linear differential equation of the form dydx+Py=Q, where P=34x and Q=7.

Now, integrating factor (IF) =e34xdx

=e34logx=elogx3/4=x3/4

and solution of differential Eq. (i) is given by

y(IF)=(Q(IF))dx+Cyx3/4=7x3/4dx+Cyx3/4=7x34+134+1+Cyx3/4=4x74+Cy=4x+Cx3/4 So, y=f(x)=4x+Cx3/4 Now, f1x=4x+Cx3/4limx0+xf1x=limx0+x4x+Cx3/4=limx0+(4+Cx7/4)=4



NCERT Chapter Video Solution

Dual Pane