Differential Equations 1 Question 7

7. The differential equation $\frac{d y}{d x}=\frac{\sqrt{1-y^{2}}}{y}$ determines a family of circles with

(2007, 3M)

(a) variable radii and a fixed centre at $(0,1)$

(b) variable radii and a fixed centre at $(0,-1)$

(c) fixed radius 1 and variable centres along the $X$-axis

(d) fixed radius 1 and variable centres along the $Y$-axis

Show Answer

Answer:

Correct Answer: 7. (c)

Solution:

  1. Given, $\frac{d y}{d x}=\frac{\sqrt{1-y^{2}}}{y}$

$$ \begin{array}{ll} \Rightarrow & \int \frac{y}{\sqrt{1-y^{2}}} d y=\int d x \\ \Rightarrow & -\sqrt{1-y^{2}}=x+c \quad \Rightarrow \quad(x+c)^{2}+y^{2}=1 \end{array} $$

Here, centre $(-c, 0)$ and radius $=1$



NCERT Chapter Video Solution

Dual Pane