Differential Equations 1 Question 2

2. The solution of the differential equation, dydx=(xy)2, when y(1)=1, is

(2019 Main, 11 Jan II)

(a) loge|2y2x|=2(y1)

(b) loge|1+xy1x+y|=x+y2

(c) loge|2x2y|=xy

(d) loge|1x+y1+xy|=2(x1)

Show Answer

Answer:

Correct Answer: 2. (d)

Solution:

  1. We have, dydx=(xy)2 which is a differential equation of the form

dydx=f(ax+by+c)

Put xy=t

1dydx=dtdxdydx=1dtdx1dtdx=t2[dydx=(xy)2]dtdx=1t2dt1t2=dx

[separating the variables]

12loge1+t1t=x+Cdxa2x2=12aloge|a+xax|+C12loge1+xy1x+y=x+C[t=xy]

Since, y=1 when x=1, therefore

12loge1+01+0=1+CC=112loge1+xy1x+y=x1loge|1x+y1+xy|=2(x1)

[log1x=logx1=logx]



NCERT Chapter Video Solution

Dual Pane