Differential Equations 1 Question 19

19.

Let $f: R \rightarrow R$ be a continuous function, which satisfies $f(x)=\int _0^{x} f(t) d t$. Then, the value of $f(\ln 5)$ is … .

(2009)

Show Answer

Answer:

Correct Answer: 19. (0)

Solution:

  1. From given integral equation, $f(0)=0$.

Also, differentiating the given integral equation w.r.t. $x$

$= f^{\prime}(x)=f(x) $

$\text { If } f(x) \neq 0 $

$\Rightarrow \frac{f^{\prime}(x)}{f(x)}=1 \Rightarrow \log f(x)=x+c $

$\Rightarrow f(x)=e^{c} e^{x} $

$\because f(0)=0 \Rightarrow e^{c}=0, \text { a contradiction } $

$\therefore f(x)=0, \forall x \in R $

$\Rightarrow f(\ln 5)=0$

Alternate Solution

Given,

$ f(x)=\int _0^{x} f(t) d t $

$\Rightarrow$ $ f(0)=0 \quad \text { and } \quad f^{\prime}(x)=f(x) $

If $f(x) \neq 0$

$\Rightarrow \frac{f^{\prime}(x)}{f(x)}=1 \Rightarrow \ln f(x)=x+c $

$\Rightarrow f(x)=e^{c} \cdot e^{x} $

$\because f(0)=0$

$\Rightarrow e^{c}=0, a$ contradiction

$\therefore f(x)=0, \forall x \in R $

$\Rightarrow f(\ln 5)=0$



NCERT Chapter Video Solution

Dual Pane