Differential Equations 1 Question 15

15.

Let f:RR be a differentiable function with f(0)=0. If y=f(x) satisfies the differential equation dydx=(2+5y)(5y2), then the value of limxf(x) is ....)

Show Answer

Answer:

Correct Answer: 15. (0,40)

Solution:

  1. We have,

dydx=(2+5y)(5y2)dy25y24=dx125(dyy2425)=dx

On integrating both sides, we get

125dyy225=dx125×12×25log|y2/5y+2/5|=x+Clog|5y25y+2|=20(x+C)|5y25y+2|=Ae20x[e20C=A]

when x=0y=0, then A=1

|5y25y+2|=e20x

limx|5f(x)25f(x)+2|=limxe20x

limn|5f(x)25f(x)+2|=0limn5f(x)2=0limnf(x)=25=0.4



NCERT Chapter Video Solution

Dual Pane