Definite Integration Question 85

Question 85

  1. (i) Show that 0πxf(sinx)dx=π20πf(sinx)dx.

(ii) Find the value of 13/2|xsinπx|dx.

(1982,2M)

(1982,3M)

Show Answer

Answer:

Correct Answer: 87. (ii) 3π+1π2

Solution:

  1. (i) Let I=0πxf(sinx)dx

I=0π(πx)f(sinx)dx

On adding Eqs. (i) and (ii), we get

2I=0ππf(sinx)dx

0πxf(sinx)dx=π20πf(sinx)dx

(ii) Let I=13/2|xsinπx|dx

Since, |xsinπx|=xsinπx,1<x1 xsinπx,1<x<32

I=11xsinπxdx+13/2xsinπxdx

$=2-\frac{x \cos \pi x}{\pi}{ }{0}^{1}-2 \int{0}^{1} 1 \cdot \frac{-\cos \pi x}{\pi} d x$

$-\frac{-x \cos \pi x}{\pi}{ }{1}^{3 / 2}-\int{1}^{3 / 2} \frac{-\cos \pi x}{\pi} d x$

=2π+2π2(00)+1π+1π2(+10)

=3π+1π2=3π+1π2



NCERT Chapter Video Solution

Dual Pane