Definite Integration Question 83

Question 83

  1. Evaluate $\int_{0}^{1 / 2} \frac{x \sin ^{-1} x}{\sqrt{1-x^{2}}} d x$.

$(1984,2 M)$

Show Answer

Answer:

Correct Answer: 85. $-\frac{\sqrt{3}}{12} \pi+\frac{1}{2}$

Solution:

  1. Let $I=\int_{0}^{1 / 2} \frac{x \sin ^{-1} x}{\sqrt{1-x^{2}}} d x$ Put $^{-1} x=\theta \Rightarrow x=\sin \theta$

$\Rightarrow d x=\cos \theta d \theta$

$\therefore I=\int_{0}^{\pi / 6} \frac{\theta \sin \theta}{\sqrt{1-\sin ^{2} \theta}} \cdot \cos \theta d \theta=\int_{0}^{\pi / 6} \theta \sin \theta d \theta$

$=[-\theta \cos \theta]{0}^{\pi / 6}+\int{0}^{\pi / 6} \cos \theta d \theta$

$=-\frac{\pi}{6} \cos \frac{\pi}{6}+0+\sin \frac{\pi}{6}-\sin 0=-\frac{\sqrt{3} \pi}{12}+\frac{1}{2}$



NCERT Chapter Video Solution

Dual Pane