Definite Integration Question 72

Question 72

  1. Evaluate the definite integral

1/31/3x41x4cos12x1+x2dx

(1995,5M)

Show Answer

Solution:

  1. Let I=1/31/3x41x4cos12x1+x2dx

Put x=ydx=dy

I=1/31/3y41y4cos12y1+y2(1)dy Now, cos1(x)=πcos1x for 1x1.

$$ \begin{aligned} \therefore \quad I & =\int_{-1 / \sqrt{3}}^{1 / \sqrt{3}} \frac{y^{4}}{1-y^{4}} \pi-\cos ^{-1} \frac{2 y}{1+y^{2}} d y \ & =\pi \int_{-1 / \sqrt{3}}^{1 / \sqrt{3}} \frac{y^{4}}{1-y^{4}} d y-\int_{-1 / \sqrt{3}}^{1 / \sqrt{3}} \frac{y^{4}}{1-y^{4}} \cos ^{-1} \frac{2 y}{1+y^{2}} d y \ & =\pi \int_{-1 / \sqrt{3}}^{1 / \sqrt{3}} \frac{x^{4}}{1-x^{4}} d x-\int_{-1 / \sqrt{3}}^{1 / \sqrt{3}} \frac{x^{4}}{1-x^{4}} \cos ^{-1} \frac{2 x}{1+x^{2}} d x \ \Rightarrow \quad I & =\pi \int_{-1 / \sqrt{3}}^{1 / \sqrt{3}} \frac{x^{4}}{1-x^{4}} d x-I \ \Rightarrow \quad 2 I= & \quad \text { [from Eq. (i)] } \ = & 1 / \sqrt{3} \frac{x^{4}}{1-x^{4}} d x=\pi \int_{-1 / \sqrt{3}}^{1 / \sqrt{3}}-1+\frac{1}{1-x^{4}} d x \ = & \quad 2 I=-\pi[x]{-1 / \sqrt{3}}^{1 / \sqrt{3}}+\pi I{1}, \text { where } I_{1}=\int_{-1 / \sqrt{3}}^{1 / \sqrt{3}} \frac{d x}{1-x^{4}} \ \Rightarrow \quad & \frac{1}{\sqrt{3}}+\frac{1}{\sqrt{3}}+\pi I_{1}=-\frac{2 \pi}{\sqrt{3}}+\pi I_{1} \end{aligned} $$

Now, I1=1/31/3dx1x4=201/3dx1x4

[since, the integral is an even function]

=01/31+1+x2x2(1x2)(1+x2)dx

=01/311x2dx+01/311+x2dx

=01/31(1x)(1+x)dx+01/31(1+x2)dx

=1201/311xdx+1201/311+xdx+01/311+x2dx

=12ln|1x|+12ln|1+x|+tan1x01/3

$=\frac{1}{2} \ln \frac{1+x}{1-x}{ }{0}^{1 / \sqrt{3}}+\left[\tan ^{-1} x\right]{0}^{1 / \sqrt{3}}$

=12ln1+1/311/3+tan113

=12ln3+131+π6=12ln(3+1)231+π6

=12ln(2+3)+π6

2I=2π3+π2ln(2+3)+π26

=π6[π+3ln(2+3)43]

I=π12[π+3ln(2+3)43]

Alternate Solution

Since, cos1y=π2sin1y

cos12x1+x2=π2sin12x1+x2=π22tan1x

I=1/31/3π2x41x4x41x42tan1xdx

x41x42tan1x is an odd function

I=2π20131+11x4dx+0

=π201/32+11x2+11+x2dx

=π22x+121log1+x1x+tan1x01/3

=π223+12log3+131+π6

=π12[π+3log(2+3)43]



NCERT Chapter Video Solution

Dual Pane