Definite Integration Question 71

Question 71

  1. Integrate 0π/4log(1+tanx)dx.

(1997C, 2M)

Show Answer

Solution:

  1. Let I=0π/4log(1+tanx)dx

I=0π/4log(1+tan(π4x))dx I=0π/4log1+1tanx1+tanxdx

0π/4log1+tanx+1tanx1+tanxdx I=0π/4log21+tanxdxI=0π/4log2dxI 2I=π4log2I=π8(log2)  73. Let I=ππ2x(1+sinx)1+cos2xdx I=ππ2x1+cos2xdx+ππ2xsinx1+cos2xdx I=I1+I2

Now, I1=ππ2x1+cos2xdx

Let f(x)=2x1+cos2x

f(x)=2x1+cos2(x)=2x1+cos2x=f(x)

f(x)=f(x) which shows that f(x) is an odd function.

I1=0  Again, let g(x)=2xsinx1+cos2x

g(x)=2(x)sin(x)1+cos2(x)=2xsinx1+cos2x=g(x)

g(x)=g(x) which shows that g(x) is an even function.

I2=ππ2xsinx1+cos2xdx=220πxsinx1+cos2xdx

=40π(πx)sin(πx)1+[cos(πx)]2dx=40π(πx)sinx1+cos2xdx =40ππsinx1+cos2xdx40πxsinx1+cos2xdx

I2=4π0πsinx1+cos2xdxI2

2I2=4π0πsinx1+cos2xdx

Put cosx=tsinxdx=dt

I2=2π11dt1+t2=2π11dt1+t2=4π01dt1+t2

=4π[tan1t]01=4π[tan11tan10]

=4π(π/40)=π2

I=I1+I2=0+π2=π2



NCERT Chapter Video Solution

Dual Pane