Definite Integration Question 70

Question 70

  1. Prove that 01tan111x+x2dx=201tan1xdx.

Hence or otherwise, evaluate the integral

01tan1(1x+x2)dx

(1998,8 M)

Show Answer

Solution:

  1. 01tan111x+x2dx=01tan11x+x1x(1x)dx

=01[tan1(1x)tan1x]dx =01tan1[1(1x)]dx+01tan1xdx =201tan1xdx0af(x)dx=0af(ax)dx

Now, 01tan111x+x2dx

=01π2cot111x+x2dx =π201tan1(1x+x2)dx 01tan1(1x+x2)dx=π201tan11(1x+x2)dx =π22I1

where, $I_{1}=\int_{0}^{1} \tan ^{-1} x d x=\left[x \tan ^{-1} x\right]{0}^{1}-\int{0}^{1} \frac{x d x}{1+x^{2}}$

$$ \begin{gathered} =\frac{\pi}{4}-\frac{1}{2}\left[\log \left(1+x^{2}\right)\right]{0}^{1}=\frac{\pi}{4}-\frac{1}{2} \log 2 \ \therefore \int{0}^{1} \tan ^{-1}\left(1-x+x^{2}\right) d x=\frac{\pi}{2}-2 \frac{\pi}{4}-\frac{1}{2} \log 2=\log 2 \end{gathered} $$



NCERT Chapter Video Solution

Dual Pane