Definite Integration Question 67

Question 67

  1. Evaluate π/3π/3π+4x32cos|x|+π3dx.

(2004,4 M)

Show Answer

Solution:

  1. Let I=π/3π/3πdx2cos|x|+π3+4π/3π/3x3dx2cos|x|+π3

 Using aaf(x)dx=0af(x)dx,f(x)=f(x) I=20π/3πdx2cos|x|+π3+0 x3dx2cos|x|+π3 is odd  I=2π0π/3dx2cos(x+π/3)

Put x+π3=tdx=dt

I=2ππ/32π/3dt2cost=2ππ/32π/3sec2t2dt1+3tan2t2

Put tant2=usec2t2dt=2du

$$ \begin{aligned} \Rightarrow & I=2 \pi \int_{1 / \sqrt{3}}^{\sqrt{3}} \frac{2 d u}{1+3 u^{2}}=\frac{4 \pi}{3}\left[\sqrt{3} \tan ^{-1} \sqrt{3} u\right]{\frac{1}{\sqrt{3}}}^{\sqrt{3}} \ & =\frac{4 \pi}{\sqrt{3}}\left(\tan ^{-1} 3-\tan ^{-1} 1\right)=\frac{4 \pi}{\sqrt{3}} \tan ^{-1} \frac{1}{2} \ \therefore & \int{-\pi / 3}^{\pi / 3} \frac{\pi+4 x^{3}}{2-\cos |x|+\frac{\pi}{3}} d x=\frac{4 \pi}{\sqrt{3}} \tan ^{-1} \frac{1}{2} \end{aligned} $$



NCERT Chapter Video Solution

Dual Pane