Definite Integration Question 66

Question 66

  1. Evaluate

0πe|cosx|2sin12cosx+3cos12cosxsinxdx.

(2005,2M)

Show Answer

Solution:

  1. Let

I=0πe|cosx|2sin12cosx+3cos12cosxsinxdx

I=0πe|cosx|sinx2sin12cosxdx

+0πe|cosx|3cos12cosxsinxdx

I=I1+I2 using 02af(x)dx

0,f(2ax)=f(x)

=20af(x)dx,f(2ax)=+f(x)

where, I1=0[f(πx)=f(x)]

and I2=60π/2ecosxsinxcos12cosxdx

Now, I2=601etcost2dt

[put cosx=tsinxdx=dt ]

=6etcost2+12etsint2dt01

=6etcost2+12etsint2et2cost2dt01

=6etcost2+12etsint21I24

=245ecos12+e2sin121

From Eq. (i), we get

I=245ecos12+e2sin121



NCERT Chapter Video Solution

Dual Pane