Definite Integration Question 66

Question 66

  1. Evaluate

$\int_{0}^{\pi} e^{|\cos x|} 2 \sin \frac{1}{2} \cos x+3 \cos \frac{1}{2} \cos x \sin x d x$.

$(2005,2 \mathrm{M})$

Show Answer

Solution:

  1. Let

$I=\int_{0}^{\pi} e^{|\cos x|} 2 \sin \frac{1}{2} \cos x+3 \cos \frac{1}{2} \cos x \sin x d x$

$\Rightarrow I=\int_{0}^{\pi} e^{|\cos x|} \cdot \sin x \cdot 2 \sin \frac{1}{2} \cos x d x$

$+\int_{0}^{\pi} e^{|\cos x|} \cdot 3 \cos \frac{1}{2} \cos x \cdot \sin x d x$

$\Rightarrow \quad I=I_{1}+I_{2}$ using $\int_{0}^{2 a} f(x) d x$

$0, \quad f(2 a-x)=-f(x)$

$$ =2 \int_{0}^{a} f(x) d x, \quad f(2 a-x)=+f(x) $$

where, $\quad I_{1}=0 \quad[\because f(\pi-x)=-f(x)]$

and $\quad I_{2}=6 \int_{0}^{\pi / 2} e^{\cos x} \cdot \sin x \cdot \cos \frac{1}{2} \cos x d x$

Now, $\quad I_{2}=6 \int_{0}^{1} e^{t} \cdot \cos \frac{t}{2} d t$

[put $\cos x=t \Rightarrow-\sin x d x=d t$ ]

$=6 e^{t} \cos \frac{t}{2}+\frac{1}{2} \int e^{t} \sin \frac{t}{2} d t_{0}^{1}$

$=6 e^{t} \cos \frac{t}{2}+\frac{1}{2} e^{t} \sin \frac{t}{2}-\int \frac{e^{t}}{2} \cos \frac{t}{2} d t_{0}^{1}$

$=6 e^{t} \cos \frac{t}{2}+\frac{1}{2} e^{t} \sin \frac{t}{2}^{1}-\frac{I_{2}}{4}$

$$ =\frac{24}{5} e \cos \frac{1}{2}+\frac{e}{2} \sin \frac{1}{2}-1 $$

From Eq. (i), we get

$$ I=\frac{24}{5} e \cos \frac{1}{2}+\frac{e}{2} \sin \frac{1}{2}-1 $$



NCERT Chapter Video Solution

Dual Pane