Definite Integration Question 61

Question 61

  1. The value of $\int_{-2}^{2}\left|1-x^{2}\right| d x$ is … .

(1989, 2M)

Show Answer

Solution:

  1. $\int_{-2}^{2}\left|1-x^{2}\right| d x$

$=\int_{-2}^{-1}\left(x^{2}-1\right) d x+\int_{-1}^{1}\left(1-x^{2}\right) d x+\int_{1}^{2}\left(x^{2}-1\right) d x$

$=\frac{x^{3}}{3}-x_{-2}^{-1}+x-{\frac{x^{3}}{3}}{-1}^{1}+\frac{x^{3}}{3}-x{1}^{2}$

$=-\frac{1}{3}+1+\frac{8}{3}-2+1-\frac{1}{3}+1-\frac{1}{3}+\frac{8}{3}-2-\frac{1}{3}+1$

$=4$



NCERT Chapter Video Solution

Dual Pane