Definite Integration Question 52

Question 52

  1. If In=ππsinnx(1+πx)sinxdx,n=0,1,2,, then (a) In=In+2 (b) m=110I2m+1=10π (c) m=110I2m=0 (d) In=In+1

Numerical Value

Show Answer

Solution:

  1. Given

In=ππsinnx(1+πx)sinxdx

Using abf(x)dx=abf(b+ax)dx, we get

In=πππxsinnx(1+πx)sinxdx

On adding Eqs. (i) and (ii), we have

2In=ππsinnxsinxdx=20πsinnxsinxsindx [f(x)=sinnxsinx is an even function ] In=0πsinnxsinxdx  Now, In+2In=0πsin(n+2)xsinnxsinxdx

$$ \begin{aligned} & =2 \int_{0}^{\pi} \cos (n+1) x d x=2 \frac{\sin (n+1) x}{(n+1)}{ }{0}^{\pi}=0 \ & \therefore \quad I{n+2}=I_{n} \end{aligned} $$

m=110I2m+1=10π and m=110I2m=0

Correct options are (a), (b), (c).



NCERT Chapter Video Solution

Dual Pane