Definite Integration Question 5

Question 5

  1. Let Sn=k=0nnn2+kn+k2 and Tn=k=0n1nn2+kn+k2, for n=1,2,3,, then (a) Sn<π33 (b) Sn>π33 (c) Tn<π33 (d) Tn>π33

(2008,4 M)

Analytical & Descriptive Question

Show Answer

Answer:

Correct Answer: 5. (b, d)

Solution:

  1. Given, Sn=k=0nnn2+kn+k2

$$ \begin{aligned} & =\sum_{k=0}^{n} \frac{1}{n} \cdot \frac{1}{1+\frac{k}{n}+\frac{k^{2}}{n^{2}}}<\lim {n \rightarrow \infty} \sum{k=0}^{n} \frac{1}{n} \frac{1}{1+\frac{k}{n}+\frac{k^{2}}{n}} \ & =\int_{0}^{1} \frac{1}{1+x+x^{2}} d x \ & =\frac{2}{\sqrt{3}} \tan ^{-1} \frac{2}{\sqrt{3}} x+\frac{1}{2} \ & =\frac{2}{\sqrt{3}} \cdot \frac{\pi}{3}-\frac{\pi}{6}=\frac{\pi}{3 \sqrt{3}} \quad \text { i.e. } S_{n}<\frac{\pi}{3 \sqrt{3}} \end{aligned} $$

Similarly, Tn>π33



NCERT Chapter Video Solution

Dual Pane