Definite Integration Question 48

Question 48

  1. Let f(x)=7tan8x+7tan6x3tan4x3tan2x for all xπ2,π2. Then, the correct expression(s) is/are (a) 0π/4xf(x)dx=112 (b) 0π/4f(x)dx=0 (c) 0π/4xf(x)dx=16 (d) 0π/4f(x)dx=1

(2015 Adv.)

Show Answer

Solution:

  1. Here, f(x)=7tan8x+7tan6x3tan4x3tan2x for all xπ2,π2

f(x)=7tan6xsec2x3tan2xsec2x =(7tan6x3tan2x)sec2x

Now, 0π/4xf(x)dx=0π/4x(7tan6x3tan2x)sec2xdx

=[x(tan7xtan3x)]0π/4

0π/41(tan7xtan3x)dx

=00π/4tan3x(tan4x1)dx =0π/4tan3x(tan2x1)sec2xdx

Put tanx=tsec2xdx=dt

0π/4xf(x)dx=01t3(t21)dt

=01(t3t5)dt=t44t5501=1416=112

Also, 0π/4f(x)dx=0π/4(7tan6x3tan2x)sec2xdx

=01(7t63t2)dt=[t7t3]01=0



NCERT Chapter Video Solution

Dual Pane