Definite Integration Question 39
Question 39
- The value of the integral $\int_{0}^{\pi / 2} \frac{\sqrt{\cot x}}{\sqrt{\cot x}+\sqrt{\tan x}} d x$ is (a) $\pi / 4$ (b) $\pi / 2$ (c) $\pi$ (d) None of these
$(1983,1 \mathrm{M})$
Assertion and Reason
Show Answer
Solution:
- Let $I=\int_{0}^{\pi / 2} \frac{\sqrt{\cot x}}{\sqrt{\cot x}+\sqrt{\tan x}} d x$
$\Rightarrow \quad I=\int_{0}^{\pi / 2} \frac{\sqrt{\tan x}}{\sqrt{\cot x}+\sqrt{\tan x}} d x$
On adding Eqs. (i) and (ii), we get
$$ \begin{aligned} & 2 I=\int_{0}^{\pi / 2} 1 d x \ \therefore \quad I & =\frac{\pi}{4} \end{aligned} $$