Definite Integration Question 37

Question 37

  1. Let $f: R \rightarrow R$ and $g: R \rightarrow R$ be continuous functions. Then, the value of the integral $\int_{-\pi / 2}^{\pi / 2}[f(x)+f(-x)][g(x)-g(-x)] d x$ is

(1990, 2M) (a) $\pi$ (b) 1 (c) -1 (d) 0

Show Answer

Solution:

  1. Let $I=\int_{-\pi / 2}^{\pi / 2}[f(x)+f(-x)][g(x)-g(-x)] d x$

Let $\varphi(x)=[f(x)+f(-x)][g(x)-g(-x)]$

$\Rightarrow \quad \varphi(-x)=[f(-x)+f(x)][g(-x)-g(x)]$

$\Rightarrow \quad \varphi(-x)=-\varphi(x)$

$\Rightarrow \varphi(x)$ is an odd function.

$$ \therefore \quad \int_{-\pi / 2}^{\pi / 2} \varphi(x) d x=0 $$



NCERT Chapter Video Solution

Dual Pane