Definite Integration Question 26

Question 26

  1. The value of ππcos2x1+axdx,a>0, is

(2001, 1M) (a) π (b) aπ (c) π2 (d) 2π

Show Answer

Solution:

  1. Let I=ππcos2x1+axdx

=ππcos2(x)1+axd(x) I=ππaxcos2x1+axdx

On adding Eqs. (i) and (ii), we get

$$ \begin{aligned} 2 I & =\int_{-\pi}^{\pi} \frac{1+a^{x}}{1+a^{x}} \cos ^{2} x d x \ & =\int_{-\pi}^{\pi} \cos ^{2} x d x=2 \int_{0}^{\pi} \frac{1+\cos 2 x}{2} d x \ & =\int_{0}^{\pi}(1+\cos 2 x) d x=\int_{0}^{\pi} 1 d x+\int_{0}^{\pi} \cos 2 x d x \ & =[x]{0}^{\pi}+2 \int{0}^{\pi / 2} \cos 2 x d x=\pi+0 \ \Rightarrow \quad 2 I & =\pi \quad \Rightarrow \quad I=\pi / 2 \end{aligned} $$

ecosxsinx, for |x|2



NCERT Chapter Video Solution

Dual Pane