Definite Integration Question 20

Question 20

  1. Determine a positive integer n5, such that 01ex(x1)ndx=166e

(1992,4M)

Show Answer

Answer:

Correct Answer: 20. At x=1 and 75,f(x) is maximum and minimum respectively.

Solution:

  1. Let In=01ex(x1)ndx

 Put x1=tdx=dt

In=10et+1tndt=e10tnetdt

$=e\left[t^{n} e^{t}\right]{-1}^{0}-n \int{-1}^{0} t^{n-1} e^{t} d t$

=e0(1)ne1n10tn1etdt

=(1)n+1ne10tn1etdt

In=(1)n+1nIn1

For $n=1, I_{1}=\int_{0}^{1} e^{x}(x-1) d x=\left[e^{x}(x-1)\right]{0}^{1}-\int{0}^{1} e^{x} d x$

=e1(11)e0(01)[ex]01=1(e1)=2e

Therefore, from Eq. (i), we get

 and I2=(1)2+12I1=12(2e)=2e5 I3=(1)3+13I2=13(2e5)=166e

Hence, n=3 is the answer.



NCERT Chapter Video Solution

Dual Pane