Definite Integration Question 19

Question 19

  1. Let a+b=4, where a<2 and let g(x) be a differentiable function. If dgdx>0,x prove that 0ag(x)dx+0bg(x)dx increases as (ba) increases. (1997,5M)
Show Answer

Answer:

Correct Answer: 19. (n=3)

Solution:

  1. Let t=ba and a+b=4

[given]

t=4aa t=42a a=2t2  and t=b(4b) t=2b4 t2=b2 b=2+t2

Again, a<2

2π2<2 π2>0t>0

[given]

Now, 0ag(x)dx+0bg(x)dx

=02t/2g(x)dx+02+t/2g(x)dx

Let F(x)=02t/2g(x)dx+02+t/2g(x)dx

For t>0,F(t)=12g2t2+12g2+t2

[using Leibnitz’s rule]

=12g2+t212g2t2

Again, dgdx>0,xR

[given]

Now, 2t/2<2+t/2t>0

We get g(2+t/2)g(2t/2)>0,t>0

So, F(t)>0,t>0

Hence, F(t) increases with t, therefore F(t) increases as (ba) increases.



NCERT Chapter Video Solution

Dual Pane