Definite Integration Question 17

Question 17

  1. f(x)=|secxcosxsec2x+cotxcosecx cos2xcos2xcosec2x 1cos2xcos2x|. Then, 0π/2f(x)dx=.

(1987,2M)

Analytical & Descriptive Questions

Show Answer

Answer:

Correct Answer: 17. 15π+3260

Solution:

  1. Given, f(x)=|secxcosxcosecxcotx+sec2x cos2xcos2xcosec2x 1cos2xcos2x| Applying R31cosxR3,

f(x)=cosx|secxcosxcosecxcotx+sec2x cos2xcos2xcosec2x secxcosxcosx|

Applying R1R1R3f(x)

=cosx|00cosecxcotx+sec2xcosx cos2xcos2xcosec2x secxcosxcosx|

=(cosecxcotx+sec2xcosx)(cos3xcosx)cosx =sin2x+cos3xcos3xsin2xsin2xcos2xcos2xsin2x =sin2xcos3x(1sin2x)=sin2xcos5x 0π/2f(x)dx=0π/2(sin2x+cos5x)dx 0π/2sinmxcosnxdx=m+12n+222m+n+22 0π/2f(x)dx=321222+6212272 =1/2π2+2π2523212π=π4+815=15π+3260



NCERT Chapter Video Solution

Dual Pane