Definite Integration Question 14

Question 14

  1. If $g(x)=\int_{\sin x}^{\sin (2 x)} \sin ^{-1}(t) d t$, then (a) $g^{\prime}-\frac{\pi}{2}=2 \pi$ (b) $g^{\prime}-\frac{\pi}{2}=-2 \pi$ (c) $g^{\prime} \frac{\pi}{2}=2 \pi$ (d) $g^{\prime} \frac{\pi}{2}=-2 \pi$

Passage Based Questions

Let $f(x)=(1-x)^{2} \sin ^{2} x+x^{2}, \forall x \in R$ and

$g(x)=\int_{1}^{x} \frac{2(t-1)}{t+1}-\ln t \quad f(t) d t \forall x \in(1, \infty)$.

Show Answer

Answer:

Correct Answer: 14. $\left(^{*}\right)$

Solution:

  1. $g(x)=\int_{\sin x}^{\sin 2 x} \sin ^{-1}(t) d t$

$$ \begin{aligned} g^{\prime}(x) & =2 \cos 2 x \sin ^{-1}(\sin 2 x)-\cos x \sin ^{-1}(\sin x) \ g^{\prime} \frac{\pi}{2} & =-2 \sin ^{-1}(0)=0 \ g^{\prime}-\frac{\pi}{2} & =-2 \sin ^{-1}(0)=0 \end{aligned} $$

No option is matching.



NCERT Chapter Video Solution

Dual Pane