Definite Integration Question 11
Question 11
- $\int_{0}^{x} f(t) d t=x+\int_{x}^{1} t f(t) d t$, then the value of $f(1)$ is (a) $\frac{1}{2}$ (b) 0 (c) 1 (d) $-\frac{1}{2}$
(1998, 2M)
Show Answer
Answer:
Correct Answer: 11. (a)
Solution:
- Given, $\int_{0}^{x} f(t) d t=x+\int_{x}^{1} t f(t) d t$
On differentiating both sides w.r.t. $x$, we get
$$ \begin{array}{rlrl} & & f(x) 1 & =1-x f(x) \cdot 1 \Rightarrow(1+x) f(x)=1 \ \Rightarrow & & f(x)=\frac{1}{1+x} \Rightarrow f(1)=\frac{1}{1+1}=\frac{1}{2} \end{array} $$