Complex Numbers 5 Question 20

21.

Let $\omega=e^{i \pi / 3}$ and $a, b, c, x, y, z$ be non-zero complex numbers such that $a+b+c=x, a+b \omega+c \omega^{2}=y$, $a+b \omega^{2}+c \omega=z$.

Then, the value of $\frac{|x|^{2}+|y|^{2}+|z|^{2}}{|a|^{2}+|b|^{2}+|c|^{2}}$ is ……

(2011)

Show Answer

Answer:

Correct Answer: 21. (3)

Solution:

  1. Priniting error $=e^{i \frac{2 \pi}{3}}$

Then, $\frac{\left.|x|^{2}|+| y\right|^{2}+|z|^{2}}{(a)^{2}+(b)^{2}+|c|^{2}}=3$

NOTE Here, $w=e^{i \frac{2 \pi}{3}}$, then only integer solution exists.



NCERT Chapter Video Solution

Dual Pane