Complex Numbers 5 Question 19

20.

If x=a+b,y=aα+bβ,z=aβ+bα, where α,β are complex cube roots of unity, then show that xyz=a3+b3.

(1979,3M)

Show Answer

Solution:

  1. Since, α,β are the complex cube roots of unity.

We take α=ω and β=ω2.

Now, xyz=(a+b)(aα+bβ)(aβ+bα)

=(a+b)[a2αβ+ab(α2+β2)+b2αβ]

=(a+b)[a2(ωω2)+ab(ω2+ω4)+b2(ωω2)]

=(a+b)(a2ab+b2)[1+ω+ω2=0 and ω3=1]

=a3+b3



NCERT Chapter Video Solution

Dual Pane