Complex Numbers 4 Question 7

7. Let a,bR and a2+b20.

Suppose S=zC:z=1a+ibt,tR,t0, where i=1. If z=x+iy and zS, then (x,y) lies on

(2016 Adv.)

(a) the circle with radius 12a and centre 12a,0 for a>0,b0

(b) the circle with radius 12a and centre 12a,0 for a< 0,b0

(c) the X-axis for a0,b=0

(d) the Y-axis for a=0,b0

Show Answer

Answer:

Correct Answer: 7. (d)

Solution:

  1. Here, x+iy=1a+ibt×aibtaibt

x+iy=aibta2+b2t2

Let a0,b0

x=aa2+b2t2 and y=bta2+b2t2

yx=btat=aybx

On putting x=aa2+b2t2, we get

xa2+b2a2y2b2x2=aa2(x2+y2)=ax

or x2+y2xa=0

or

x12a2+y2=14a2

Option (a) is correct.

For

a0 and b=0,x+iy=1ax=1a,y=0

z lies on X-axis.

Option (c) is correct.

For a=0 and b0,x+iy=1ibtx=0,y=1bt

z lies on Y-axis.

Option (d) is correct.



NCERT Chapter Video Solution

Dual Pane