Complex Numbers 4 Question 17

17. Prove that the complex numbers $z _1, z _2$ and the origin form an equilateral triangle only if $z _1^{2}+z _2^{2}-z _1 z _2=0$.

$(1983,2 M)$

Show Answer

Solution:

  1. Since, $z _1, z _2$ and origin form an equilateral triangle.

$\because$ if $z _1, z _2, z _3$ from an equilateral triangle, then

$$ \begin{array}{rlrl} & & z _1^{2}+z _2^{2}+z _3^{2} & =z _1 z _2+z _2 z _3+z _3 z _1 \\ & \Rightarrow & z _1^{2}+z _2^{2}+0^{2} & =z _1 z _2+z _2 \cdot 0+0 \cdot z _1 \\ \Rightarrow & & z _1^{2}+z _2^{2} & =z _1 z _2 \\ \Rightarrow & z _1^{2}+z _2^{2}-z _1 z _2 & =0 \end{array} $$



NCERT Chapter Video Solution

Dual Pane