Complex Numbers 4 Question 14

14.

Let z1 and z2 be the roots of the equation z2+pz+q=0, where the coefficients p and q may be complex numbers. Let A and B represent z1 and z2 in the complex plane. If AOB=α0 and OA=OB, where O is the origin prove that p2=4qcos2α2.

(1997, 5M)

Show Answer

Solution:

  1. Since, z1+z2=p and z1z2=q

Now,

z1z2=|z1||z2|(cosα+isinα)

z1z2=cosα+isinα1

[|z1|=|z2|]

Applying componendo and dividendo, we get

z1+z2z1z2=cosα+isinα+1cosα+isinα1=2cos2(α/2)+2isin(α/2)cos(α/2)2sin2(α/2)+2isin(α/2)cos(α/2)=2cos(α/2)[cos(α/2)+isin(α/2)]2isin(α/2)[cos(α/2)+isin(α/2)]=cot(α/2)i=icotα/2pz1z2=icot(α/2)

On squaring both sides, we get p2(z1z2)2=cot2(α/2)

p2(z1+z2)24z1z2=cot2(α/2)p2p24q=cot2(α/2)p2=p2cot2(α/2)+4qcot2(α/2)p2(1+cot2α/2)=4qcot2(α/2)p2cosec2(α/2)=4qcot2(α/2)p2=4qcos2α/2



NCERT Chapter Video Solution

Dual Pane