Complex Numbers 4 Question 1

1. Let z=32+i25+32i25. If R(z) and I(z) respectively denote the real and imaginary parts of z, then

(2019 Main, 10 Jan II)

(a) R(z)>0 and I(z)>0

(b) I(z)=0

(c) R(z)<0 and I(z)>0

(d) R(z)=3

Show Answer

Answer:

Correct Answer: 1. (b)

Solution:

  1. Given, z=32+i25+32i25

Euler’s form of

32+i2=cosπ6+isinπ6=ei(π/6) and 32i2=cosπ6+isinπ6=eiπ/6 So, z=(eiπ/6)5+(eiπ/6)5=ei5π6+ei5π6=cos5π6+isin5π6+cos5π6isin5π6=2cos5π6[eiθ=cosθ+isinθ]

I(z)=0 and R(z)=2cosπ6=3<0

cos5π6=cosππ6=cosπ6



NCERT Chapter Video Solution

Dual Pane