Complex Numbers 3 Question 8

8. For a non-zero complex number z, let arg(z) denote the principal argument with π<arg(z)π. Then, which of the following statement(s) is (are) FALSE ? (2018 Adv.)

(a) arg(1i)=π4, where i=1

(b) The function f:R(π,π], defined by f(t)=arg(1+it) for all tR, is continuous at all points of R, where i=1.

(c) For any two non-zero complex numbers z1 and z2, argz1z2arg(z1)+arg(z2) is an integer multiple of 2π.

(d) For any three given distinct complex numbers z1,z2 and z3, the locus of the point z satisfying the condition arg(zz1)(z2z3)(zz3)(z2z1)=π, lies on a straight line.

Show Answer

Answer:

Correct Answer: 8. (a,b,d)

Solution:

  1. (a) Let

z=1i and arg(z)=θ

Now, tanθ=im(z)Re(z)=11=1

θ=π4

Since, x<0,y<0

arg(z)=ππ4=3π4

(b) We have, f(t)=arg(1+it)

arg(1+it)=πtan1t,t0(π+tan1t),t<0

This function is discontinuous at t=0.

(c) We have,

argz1z2arg(z1)+arg(z2) Now, argz1z2=arg(z1)arg(z2)+2nπargz1z2arg(z1)+arg(z2)=arg(z1)arg(z2)+2nπarg(z1)+arg(z2)=2nπ

So, given expression is multiple of 2π.

(d) We have, arg (zz1)(z2z3)(zz3)(z2z1)=π

zz1zz3z2z3z2z1 is purely real

Thus, the points A(z1),B(z2),C(z3) and D(z) taken in order would be concyclic if purely real.

Hence, it is a circle.

(a), (b), (d) are false statement.



NCERT Chapter Video Solution

Dual Pane