Complex Numbers 3 Question 3

3. If $\arg (z)<0$, then $\arg (-z)-\arg (z)$ equals

$(2000,2 M)$

(a) $\pi$

(b) $-\pi$

(c) $-\pi / 2$

(d) $\pi / 2$

Show Answer

Answer:

Correct Answer: 3. (a)

Solution:

  1. Since, $\arg (z)<0 \Rightarrow \quad \arg (z)=-\theta$

$$ \begin{aligned} & \Rightarrow \quad z=r \cos (-\theta)+i \sin (-\theta) \\ & =r(\cos \theta-i \sin \theta) \\ & \text { and } \quad-z=-r[\cos \theta-i \sin \theta] \\ & =r[\cos (\pi-\theta)+i \sin (\pi-\theta)] \\ & \therefore \quad \arg (-z)=\pi-\theta \\ & =\pi-\theta-(-\theta)=\pi \end{aligned} $$

Alternate Solution

Reason $\arg (-z)-\arg z=\arg \frac{-z}{z}=\arg (-1)=\pi$ and also $\arg z-\arg (-z)=\arg \frac{z}{-z}=\arg (-1)=\pi$



NCERT Chapter Video Solution

Dual Pane