Complex Numbers 3 Question 11

11. |z|1,|w|1, then show that

|zw|2(|z||w|)2+(argzargw)2

(1995, 5M)

Show Answer

Solution:

  1. Let z=r1(cosθ1+isinθ1) and w=r2(cosθ2+isinθ2) We have, |z|=r1,|w|=r2,arg(z)=θ1 and arg(w)=θ2 Given, |z|1,|w|<1

r11 and r21

Now,

zw=(r1cosθ1r2cosθ2)+i(r1sinθ1r2sinθ2)|zw|2=(r1cosθ1r2cosθ2)2+(r1sinθ1r2sinθ2)2=r12cos2θ1+r22cos2θ22r1r2cosθ1cosθ2+r12sin2θ1+r22sin2θ22r1r2sinθ1sinθ2=r12(cos2θ1+sin2θ1)+r22(cos2θ2+sin2θ2)2r1r2(cosθ1cosθ2+sinθ1sinθ2)=r12+r222r1r2cos(θ1θ2)=(r1r2)2+2r1r2[1cos(θ1θ2)]=(r1r2)2+4r1r2sin2θ1θ22|r1r2|2+4sinθ1θ22,r21]

and |sinθ||θ|,θR

Therefore, |zw|2|r1r2|2+4θ1θ22

|r1r2|2+|θ1θ2|2

|zw|2(|z||w|)2+(argzargw)2

Alternate Solution

|zw|2=|z|2+|w|22|z||w|cos(argzargw)=|z|2+|w|22|z||w|+2|z||w|2|z||w|cos(argzargw)=(|z||w|)2+2|z||w|2sin2argzargw2(i)|zw|2(|z||w|)2+411argzargw22|zw|2(|z||w|)2+(argzargw)2



NCERT Chapter Video Solution

Dual Pane