Complex Numbers 2 Question 8

8. Let complex numbers α and 1/α¯ lies on circles (xx0)2+(yy0)2=r2 and (xx0)2+(yy0)2=4r2, respectively.

If z0=x0+iy0 satisfies the equation 2|z0|2=r2+2, then |α| is equal to

(2013 Adv.)

(a) 12

(b) 12

(c) 17

(d) 13

Show Answer

Answer:

Correct Answer: 8. (c)

Solution:

  1. PLAN Intersection of circles, the basic concept is to solve the equations simultaneously and using properties of modulus of complex numbers.

Formula used |z|2=zz¯

and

|z1z2|2=(z1z2)(z¯1z¯2)=|z1|2z1z¯2z2z¯1+|z2|2

Here, (xx0)2+(yy0)2=r2

and (xx0)2+(yy0)2=4r2 can be written as,

|zz0|2=r2 and |zz0|2=4r2

Since, α and 1α¯ lies on first and second respectively.

|αz0|2=r2 and |1α¯z0|2=4r2

(αz0)(α¯z¯0)=r2

|α|2z0α¯z¯0α+|z0|2=r2

and |1α¯z0|2=4r2

1α¯z01αz¯0=4r2

1|α|2z0αz¯0α¯+|z0|2=4r2

Since, |α|2=αα

1|α|2z0α¯|α|2z¯0|α|2α+|z0|2=4r2

1z0α¯z¯0α+|α|2|z0|2=4r2|α|2

On subtracting Eqs. (i) and (ii), we get

(|α|21)+|z0|2(1|α|2)=r2(14|α|2)(|α|21)(1|z0|2)=r2(14|α|2)(|α|21)1r2+22=r2(14|α|2) Given, |z0|2=r2+22

(|α|21)r22=r2(14|α|2)|α|21=2+8|α|27|α|2=1|α|=1/7



NCERT Chapter Video Solution

Dual Pane