Complex Numbers 2 Question 41

42.

Find all non-zero complex numbers $z$ satisfying $\bar{z}=i z^{2}$.

(1996, 2M)

Show Answer

Answer:

Correct Answer: 42. $(z=i, \pm \frac{\sqrt{3}}{2}-\frac{i}{2})$

Solution:

  1. Let

$ \begin{aligned} z & =x+i y . \\ \bar{z} & =i z^{2} \\ (\overline{x+i y}) & =i(x+i y)^{2} \\ x-i y & =i\left(x^{2}-y^{2}+2 i x y\right) \\ x-i y & =-2 x y+i\left(x^{2}-y^{2}\right) \end{aligned} $

NOTE: It is a compound equation, therefore we can generate from it more than one primary equations.

On equating real and imaginary parts, we get

$x =-2 x y \text { and }-y=x^{2}-y^{2} $

$\Rightarrow x+2 x y =0 \text { and } x^{2}-y^{2}+y=0 $

$\Rightarrow x(1+2 y) =0 $

$\Rightarrow x =0 \text { or } y=-1 / 2$

When $x=0, x^{2}-y^{2}+y=0 \Rightarrow 0-y^{2}+y=0$

$\Rightarrow y(1-y)=0 $

$\Rightarrow y=0 $ or $ y=1$

When, $y=-1 / 2, x^{2}-y^{2}+y=0$

$\Rightarrow x^{2}-\frac{1}{4}-\frac{1}{2} =0 $

$\Rightarrow x^{2}=\frac{3}{4} $

$\Rightarrow x = \pm \frac{\sqrt{3}}{2}$

Therefore, $z=0+i 0,0+i ; \pm \frac{\sqrt{3}}{2}-\frac{i}{2}$

$\Rightarrow \quad z=i, \pm \frac{\sqrt{3}}{2}-\frac{i}{2}$



NCERT Chapter Video Solution

Dual Pane