Complex Numbers 2 Question 40

41. For complex numbers z and w, prove that |z|2w|w|2z=zw, if and only if z=w or zw¯=1.

(1999,10M)

Show Answer

Solution:

  1. Given, |z|2w|w|2z=zw

zz¯www¯z=zw

Taking modulus of both sides, we get

|zw||z¯w¯|=|zw||zw||z¯w¯|=|zw|[|z|=|z¯|]|zw||z¯w¯|=|z¯w¯||z¯w¯|(|zw|1)=0|zw|=0 or |zw|1=0|zw|=0 or |zw|=1zw=0 or |zw|=1z=w or |zw|=1

Now, suppose zw

Then, |zw|=1 or |z||w|=1

|z|=1|w|=r

[say]

Let

z=reiθ and w=1reiφ

On putting these values in Eq. (i), we get

r21reiφ1r2(reiθ)=reiθ1reiφreiφ1reiθ=reiθ1reiφr+1reiφ=r+1reiθeiφ=eiθφ=θ

Therefore, z=reiθ and w=1reiθ

zw¯=reiθ1reiθ=1

NOTE ‘If and only if’ means we have to prove the relation in both directions.

Conversely

Assuming that z=w or zw¯=1

If

z=w, then  LHS =zz¯www¯z=|z|2z|w|2z=|z|2z|z|2z=0

and RHS =zw=0

If zw=1, then z¯w¯=1 and

 LHS =zz¯www¯z=z¯1w¯1

=z¯w¯=zw¯=0=RHS

Hence proved.

Alternate Solution

We have,

|z|2w|w|2z=zw

|z|2w|w|2zz+w=0(|z|2+1)w(|w|2+1)z=0(|z|2+1)w=(|w|2+1)zzw=|z|2+1|w|2+1

zw is purely real.

z¯w¯=zwzw¯=z¯w

 Again, |z|2w|w|2z=zwzz¯www¯z=zwz(z¯w1)w(zw¯1)=0(zw)(zw¯1)=0z=w or zw¯=1

Therefore, |z|2w|w|2z=zw if and only if z=w or zw¯=1.



NCERT Chapter Video Solution

Dual Pane