Complex Numbers 2 Question 39

40. If z1 and z2 are two complex numbers such that |z1|<1<∣z2, then prove that |1z1z¯2z1z2|<1.

(2003, 2M)

Show Answer

Solution:

  1. Given, |z1|<1 and |z2|>1

Then, to prove

1z1z¯2z1z2<1 using z1z2=|z1||z2||1z1z¯2|<|z1z2| (ii) 

On squaring both sides, we get,

(1z1z¯2)(1z¯1z2)<(z1z2)(z¯1z¯2)[ using |z|2=zz¯]1z1z¯2z¯1z2+z1z¯1z2z¯2<z1z¯1z1z¯2z2z¯1+z2z¯21+|z1|2|z2|2<|z1|2+|z2|21|z1|2|z2|2+|z1|2|z2|2<0(1|z1|2)(1|z2|2)<0

which is true by Eq. (i) as |z1|<1 and |z2|>1

(1|z1|2)>0 and (1|z2|2)<0

Eq. (iii) is true whenever Eq. (ii) is true.

1z1z¯2z1z2<1

Hence proved.



NCERT Chapter Video Solution

Dual Pane