Complex Numbers 2 Question 38

39.

Prove that there exists no complex number z such that |z|<1/3 and r=1narzr=1, where |ar|<2.

(2003, 2M)

Show Answer

Solution:

  1. Given, a1z+a2z2++anzn=1

 and |z|<13|a1z+a2z2+a3z3++anzn|=1|a1z|+|a2z2|+|a3z3|++|anzn|1

[using |z1+z2||z1|+|z2| ]

2(|z|+|z|2+|z|3++|z|n)>1

[using |ar|<2]

2|z|(1|z|n)1|z|>1 [using sum of n terms of GP]

2|z|2|z|n+1>1|z|

3|z|>1+2|z|n+1|z|>13+23|z|n+1|z|>13, which contradicts 

There exists no complex number z such that

|z|<1/3 and r=1narzr=1



NCERT Chapter Video Solution

Dual Pane