Complex Numbers 2 Question 19

19.

If $z=x+i y$ and $w=(1-i z) /(z-i)$, then $|w|=1$ implies that, in the complex plane

(1983, 1M)

(a) $z$ lies on the imaginary axis

(b) $z$ lies on the real axis

(c) $z$ lies on the unit circle

(d) None of these

Show Answer

Answer:

Correct Answer: 19. (b)

Solution:

  1. Since, $|w|=1 \Rightarrow \frac{1-i z}{z-i}=1$

$ \begin{array}{lll} \Rightarrow & |z-i|=|1-i z| \\ \Rightarrow & |z-i|=|z+i| \quad[\because|1-i z|=|-i||z+i|=|z+i|] \end{array} $

$\therefore$ It is a perpendicular bisector of $(0,1)$ and $(0,-1)$ i.e. $X$-axis. Thus, $z$ lies on the real axis.



NCERT Chapter Video Solution

Dual Pane