Circle 5 Question 19

19. Find the intervals of values of a for which the line y+x=0 bisects two chords drawn from a point 1+2a2,12a2 to the circle

2x2+2y2(1+2a)x(12a)y=0.

(1996,6M)

Show Answer

Answer:

Correct Answer: 19. a(,2)(2,)

Solution:

  1. Given, 2x2+2y2(1+2a)x(12a)y=0

x2+y21+2a2x12a2y=0

Since, y+x=0 bisects two chords of this circle, mid points of the chords must be of the form (α,α).

Equation of the chord having (α,α) as mid points is

T=S1

xα+y(α)1+2a4(x+α)12a4(yα)

=α2+(α)21+2a2α12a2(α)

4xα4yα(1+2a)x(1+2a)α

(12a)y+(12a)α

=4α2+4α2(1+2a)2α+(12a)2α

4αx4αy(1+2a)x(12α)y

=8α2(1+2a)α+(12a)α

But this chord will pass through the point

1+2a2,12a2

4α1+2a24α12a2(1+2a)(1+2a)2

(12a)(12a)2

=8α222αα

2α[(1+2a1+2α)]=8α222aα

42αα12[2+2(2a)2]=8α222αα

[(a+b)2+(ab)2=2a2+2b2]

8α262aα+1+2a2=0

But this quadratic equation will have two distinct roots, if

(62a)24(8)(1+2a2)>072a232(1+2a2)>08a232>0⇒<2a24>0

Therefore, a(,2)(2,).



NCERT Chapter Video Solution

Dual Pane