Circle 5 Question 12
12. From the point $A(0,3)$ on the circle $x^{2}+4 x+(y-3)^{2}=0$, a chord $A B$ is drawn and extended to a point $M$ such that $A M=2 A B$. The equation of the locus of $M$ is… .
(1986, 2M)
Show Answer
Answer:
Correct Answer: 12. $x^2 + y^2 + 8x - 6y + 9 = 0$
Solution:
- Given, $(x+2)^{2}+(y-3)^{2}=4$
Let the coordinate be $M(h, k)$, where $B$ is mid-point of $A$ and $M$.
$ \Rightarrow \quad B \frac{h}{2}, \frac{k+3}{2} $
But $A B$ is the chord of circle
$ x^{2}+4 x+(y-3)^{2}=0 $
Thus, $B$ must satisfy above equation.
$ \begin{aligned} & \therefore \quad \frac{h^{2}}{4}+\frac{4 h}{2}+\frac{1}{2}(k+3)-3^{2}=0 \\ & \Rightarrow \quad h^{2}+k^{2}+8 h-6 k+9=0 \end{aligned} $
$\therefore$ Locus of $M$ is the circle
$ x^{2}+y^{2}+8 x-6 y+9=0 $