Circle 4 Question 11

11. The equation of the circle passing through $(1,1)$ and the points of intersection of $x^{2}+y^{2}+13 x-3 y=0$ and $2 x^{2}+2 y^{2}+4 x-7 y-25=0$ is

(1983, 1M)

(a) $4 x^{2}+4 y^{2}-30 x-10 y=25$

(b) $4 x^{2}+4 y^{2}+30 x-13 y-25=0$

(c) $4 x^{2}+4 y^{2}-17 x-10 y+25=0$

(d) None of the above

Show Answer

Answer:

Correct Answer: 11. (b)

Solution:

  1. The required equation of circle is

$\left(x^{2}+y^{2}+13 x-3 y\right)+\lambda \quad 11 x+\frac{1}{2} y+\frac{25}{2}=0$

Its passing through $(1,1)$,

$ \begin{array}{rlrl} \Rightarrow & 12+\lambda(24) & =0 \\ \Rightarrow & & \lambda & =-\frac{1}{2} \end{array} $

On putting in Eq. (i), we get

$ \begin{aligned} & & x^{2}+y^{2}+13 x-3 y-\frac{11}{2} x-\frac{1}{4} y-\frac{25}{4} & =0 \\ \Rightarrow & & 4 x^{2}+4 y^{2}+52 x-12 y-22 x-y-25 & =0 \\ \Rightarrow & & 4 x^{2}+4 y^{2}+30 x-13 y-25 & =0 \end{aligned} $



NCERT Chapter Video Solution

Dual Pane