Circle 3 Question 16

16. Points $E$ and $F$ are given by

(a) $\frac{\sqrt{3}}{2}, \frac{3}{2},(\sqrt{3}, 0)$

(b) $\frac{\sqrt{3}}{2}, \frac{1}{2},(\sqrt{3}, 0)$

(c) $\frac{\sqrt{3}}{2}, \frac{3}{2}, \frac{\sqrt{3}}{2}, \frac{1}{2}$

(d) $\frac{3}{2}, \frac{\sqrt{3}}{2}, \frac{\sqrt{3}}{2}, \frac{1}{2}$

Show Answer

Answer:

Correct Answer: 16. (a)

Solution:

  1. Slope of line joining centre of circle to point $D$ is

$$ \tan \theta=\frac{\frac{3}{2}-1}{\frac{3 \sqrt{3}}{2}-\sqrt{3}}=\frac{1}{\sqrt{3}} $$

It makes an angle $30^{\circ}$ with $X$-axis.

$\therefore$ Points $E$ and $F$ will make angle $150^{\circ}$ and $-90^{\circ}$ with $X$-axis.

$\therefore E$ and $F$ are given by

$$ \begin{array}{rlrl} & & \frac{x-\sqrt{3}}{\cos 150^{\circ}} & =\frac{y-1}{\sin 150^{\circ}}=1 \\ \text { and } & \frac{x-\sqrt{3}}{\cos \left(-90^{\circ}\right)} & =\frac{y-1}{\sin \left(-90^{\circ}\right)}=1 \\ \therefore & E & =\frac{\sqrt{3}}{2}, \frac{3}{2} \text { and } F=(\sqrt{3}, 0) \end{array} $$



NCERT Chapter Video Solution

Dual Pane