Circle 1 Question 9

9. The lines $2 x-3 y=5$ and $3 x-4 y=7$ are diameters of a circle of area $154 sq$ units. Then, the equation of this circle is

$(1989,2 M)$

(a) $x^{2}+y^{2}+2 x-2 y=62$

(b) $x^{2}+y^{2}+2 x-2 y=47$

(c) $x^{2}+y^{2}-2 x+2 y=47$

(d) $x^{2}+y^{2}-2 x+2 y=62$

Show Answer

Answer:

Correct Answer: 9. (c)

Solution:

  1. Since, $2 x-3 y=5$ and $3 x-4 y=7$ are diameters of a circle.

Their point of intersection is centre $(1,-1)$.

Also given,

$ \pi r^{2}=154 $

$ \Rightarrow \quad r^{2}=154 \times \frac{7}{22} \Rightarrow r=7 $

$\therefore$ Required equation of circle is

$ \begin{array}{ll} & (x-1)^{2}+(y+1)^{2}=7^{2} \\ \Rightarrow \quad & x^{2}+y^{2}-2 x+2 y=47 \end{array} $



NCERT Chapter Video Solution

Dual Pane