Binomial Theorem 2 Question 10

13.

Prove that

+(1)knnkk0=nk(2003,4M)

Show Answer

Solution:

  1. To show that

2knC0nCk2k1nC1n1Ck1+2k2nC2n2Ck2+(1)knCknkC0=nCk

Taking LHS

2knCknCk2k1nC1n1Ck1++(1)knCknkC0

=r=0k(1)r2krnCrnrCkr

=r=0k(1)r2krn!r!(nr)!(nr)!(kr)!(nk)!

=r=0k(1)r2krn!(nk)!k!k!r!(kr)!

=r=0k(1)r2krnCkkCr=2knCk[r=0k(1)r12rkCr]

=2knCk(112)knCk=RHS



NCERT Chapter Video Solution

Dual Pane