Binomial Theorem 1 Question 6

7.

If the fourth term in the binomial expansion of (x(11+log10x)+x112)6 is equal to 200 , and x>1, then the

value of x is

(a) 100

(b) 104

(c) 10

(d) 103

Show Answer

Answer:

Correct Answer: 7. (c)

Solution:

  1. Given binomial is (x(11+log10x)+x112)6

Since, the fourth term in the given expansion is 200.

6C3(1x1+log10x)32(x112)3=200

20×x[32(1+log10x)+14]=200x32(1+log10x)+14=10[32(1+log10x)+14]log10x=1

[applying log10 both sides]

[6+(1+log10x)]log10x=4(1+log10x)(7+log10x)log10x=4+4log10xt2+7t=4+4t[ let log10x=t]t2+3t4=0t=1,4=log10xx=10,104 Since, x>1x=10



NCERT Chapter Video Solution

Dual Pane