Binomial Theorem 1 Question 6

7.

If the fourth term in the binomial expansion of $(\sqrt{x^({\frac{1}{1+\log _{10} x}})}+x^{\frac{1}{12}})^6$ is equal to $200$ , and $x>1$, then the

value of $x$ is

(a) $100$

(b) $10^{4}$

(c) $10$

(d) $10^{3}$

Show Answer

Answer:

Correct Answer: 7. (c)

Solution:

  1. Given binomial is $(\sqrt{x^({\frac{1}{1+\log _{10} x}}})+x^{\frac{1}{12}})^6$

Since, the fourth term in the given expansion is 200.

$\therefore{ }^{6} C_{3} (\frac{1}{x^{1+\log _{10} x}}{ })^{\frac{3}{2}} (x^{\frac{1}{12}}){ }^{3}=200$

$ \begin{array}{lc} \Rightarrow & 20 \times x[^{\frac{3}{2\left(1+\log _{10} x\right)}+\frac{1}{4}}]=200 \\ \Rightarrow & x^{\frac{3}{2\left(1+\log _{10} x\right)}}+\frac{1}{4}=10 \\ \Rightarrow & [\frac{3}{2\left(1+\log _{10} x\right)}+\frac{1}{4}] \log _{10} x=1 \end{array} $

[applying $\log _{10}$ both sides]

$ \begin{aligned} & \Rightarrow\left[6+\left(1+\log _{10} x\right)\right] \log _{10} x=4\left(1+\log _{10} x\right) \\ & \Rightarrow \quad\left(7+\log _{10} x\right) \log _{10} x=4+4 \log _{10} x \\ & \Rightarrow \quad t^{2}+7 t=4+4 t \quad\left[\text { let } \log _{10} x=t\right] \\ & \Rightarrow \quad t^{2}+3 t-4=0 \\ & \Rightarrow \quad t=1,-4=\log _{10} x \\ & \Rightarrow \quad x=10,10^{-4} \\ & \text { Since, } \quad x>1 \quad x=10 \end{aligned} $



NCERT Chapter Video Solution

Dual Pane