Binomial Theorem 1 Question 31

33.

If r=02nar(x2)r=r=02nbr(x3)r and ak=1,kn, then show that bn=2n+1Cn+1

(1992,6M)

Show Answer

Solution:

  1. Let y=(xa)m, where m is a positive integer, rm

Now, dydx=m(xa)m1d2ydx2=m(m1)(xa)m2

d3ydx3=m(m1)(m2)(m3)(xa)m4

On differentiating r times, we get

drydxr=m(m1)(mr+1)(xa)mr=m!(mr)!(xa)mr=r!mCr)(xa)mr

and for r>m,drydxr=0

Now, r=02nar(x2)r=r=02nbr(x3)r

[given]

On differentiating both sides n times w.r.t. x, we get

r=n2nar(n!)rCn(x2)rn=r=n2nbr(n!)rCn(x3)rn

On putting x=3, we get r=n2nar(n!)rCn=(bn)n !

[since, all the terms except first on RHS become zero]

bn=nCn+n+1Cn+n+2Cn++2nCn[ar=1,rn]=(n+2Cn+1+n+2Cn)++2nCn=n+3Cn+1++2nCn==2nCn+1+2nCn=2n+1Cn+1



NCERT Chapter Video Solution

Dual Pane