Binomial Theorem 1 Question 30

32.

Prove that r=1k(3)r13nC2r1=0, where k=(3n)/2 and n is an even positive integer.

(1993, 5M)

Show Answer

Solution:

  1. Since, n is an even positive integer, we can write

n=2m,m=1,2,3,

Also, k=3n2=3(2m)2=3mS=r=13m(3)r16mC2r1

i.e. S=(3)06mC1+(3)6mC3+ +(3)3m16mC3m1.(i)

From the binomial expansion, we write

(1+x)6m=6mC0+6mC1x+6mC2x2+6mC6m1x6m1+6mC6mx6m.(ii)(1x)6m=6mC0+6mC1(x)+6mC2(x)2++6mC6m1(x)6m1+6mC6m(x)6m.(iii)

On subtracting Eq. (iii) from Eq. (ii), we get

(1+x)6m(1x)6m=2[6mC1x+6mC3x3 +6mC5x5++6mC6m1x6m1]

(1+x)6m(1x)6m2x=6mC1+6mC3x2+6mC5x4+ +6mC6m1x6m2

 Let x2=y

(1+y)6m(1y)6m2y=6mC1+6mC3y

+6mC5y2++6mC6m1y3m1

For the required sum we have to put y=3 in RHS.

S=(1+3)6m(13)6m23=(1+i3)6m(1i3)6m2i3.(iv)

Let z=1+i3=r(cosθ+isinθ)

r=|z|=1+3=2

and θ=π/3

Now, z6m=[r(cosθ+isinθ)]6m

=r6m(cos6mθ+isin6mθ)

Again, z¯=r(cosθisinθ)

and (z¯)6m=r6m(cos6mθisin6mθ)

z6mz¯6m=r6m(2isin6mθ).(v)

From Eq. (i),

S=z6mz¯6m2i3=r6m(2isin6mθ)2i3=26msin6mθ3=0 as mz, and θ=π/3



NCERT Chapter Video Solution

Dual Pane